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New

Experimental Distinction Between Crossed-Field and
In-Line Three-Port Circuit Models for Interdigital
Transducers

W. RICHARD SMITH

Abstract—The crossed-field and in-line Mason circuit models for
interdigital surface-wave transducers give opposite predictions for
the dependence of acoustic reflection coefficients on electric load
resistance for purely resistive loads. Experiments described herein
show that the crossed-field model correctly describes the reflections
for YX quartz, ST-X quartz, and YZ lithium niobate substrates. A
low-resistance load minimizes reflections for transducers with
double electrodes operating at the fundamental synchronous fre-
quency. For single electrode transducers, optimum reflection sup-
pression may call for a load resistance comparable to the transducer
impedance.

I. INTRODUCTION

The crossed-field and in-line three-port Mason circuits [1] for
bulk-wave transducers have found wide usage as approximate
equivalent circuits for interdigital surface-wave transducers [27].
Arguments for preferring both the in-line and crossed-field models
have been suggested by various authors [3]-[6]. In addition, an
intermediate mixed model has been proposed by Milsom and Red-
wood [7]. In [8] some differences between the models are empha-
sized, and it is stated that the choice of model apparently depends
on the piezoelectric substrate.

This short paper provides an experimental basis for determining
which model gives the better representation of a particular inter-
digital transducer and piezoelectric substrate. In addition, it negates
a statement made earlier in [8] to the effect that the two models
predict identical results for all transducer three-port transfer proper-
ties in the weak-coupling limit. The new finding reported here is that
measurements of transducer acoustic reflection coefficients as a
function of electric load resistance can determine which model is
applicable, since the two models predict opposite behavior for purely
resistive loads. Specific results are given in the following for ‘“‘double
electrode’” [9] transducers on YX quartz, ST-X quartz, and YZ
lithium niobate, and for a ‘‘single electrode’” transducer on YZ
lithium niobate.

I1. ACOUSTIC REFLECTIONS

The experimental distinetion between the crossed-field and in-line
Mason circuits is based on measuring the acoustic reflection coeffi-
cient of a transducer as a function of the electric load. We begin by
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Fig. 1. Mass/electrical loading reflections of single and double elec-

trodes.

distinguishing the two causes of surface-wave reflections in inter-
digital transducers.

The first cause is the fact that metal electrodes short out the tan-
gential electric field at the crystal surface and introduce mechanical
loading, so that the electrode and gap regions have different apparent
wave impedances [10], [11]. The second cause is that forward and
backward surface waves are ‘‘regenerated’’ in the transdueer by the
voltage that the incident surface wave delivers to the electric load.
The magnitude of the regenerated surface waves can be reduced (at
a sacrifice in insertion loss) by varying the load impedance.

In ordinary single electrode transducers [Fig. 1(a)], the
“mass/electrical loading” (MEL) reflections can become par-
ticularly troublesome because the metal stripes are spaced by one-
half wavelength, causing MEL reflections to add in phase. The
double electrode geometry [9] [Fig. 1(b)] provides a high degree
of cancellation of the MEL reflections from successive electrodes, so
that the reflections in double electrode devices are almost entirely
of the regenerated wave (RW) type. Our purpose here is to deter-
mine a transducer circuit model which accurately describes the total
(MEL and RW) reflections with particular emphasis on their rela-
tion to the electric load.

III. MASON CIRCUIT MODELS

The Mason circuits for bulk-wave transducers have found wide
usage in surface-wave work since they give a three-port description
of interdigital transducers, either periodic or dispersive with many
nonidentical electrodes. In order to account for the different acoustic-
wave impedances of the electrode and gap regions, the circuit of
Fig. 2 has been used by at least two authors {107, [117. In this circuit
the unit cell of length d is subdivided into a metallized and an un-
metallized region, with wave impedances Z,, and Z, in the corre-
sponding acoustic transmission lines.

Synchronous operation is defined by the condition that d be equal
to one-half acoustic wavelength (A = 2d), and the circuit of Fig. 2

ACOUSTIC

REFLECTION )

(o)

Mason circuit model for single electrodes, including an acoustic-

Fig. 2.
wave impedance discontinuity.
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Fig. 3. Mason circuit without impedance discontinuity for double
electrodes (assumes perfect cancellation of MEL reflections).

corresponds to single electrodes. By means of the parameter « the
circuit can be designated as the “crossed-field”’ model [2] (e« = 0),
the “in-line’” model [2] (« = 1), or the “mixed”’ model [7]
D<a<l).

Up to the present time we have not modified the Mason circuits
to distinguish between the electric- and acoustic-field distributions
of single and double electrodes. We have, however, modeled the effect
of double electrodes on MEL reflections by including in the region
of length d four Mason circuits of like electric polarity but of alter-
nating wave impedances Z, and Z,. For operation near the syn-
chronous condition A = 2d, this circuit will exhibit a high degree of
cancellation of MEL reflections of successive metal stripes, while
maintaining the electric driving period of one acoustic wavelength.
However, to emphasize the nearly total cancellation of MEL reflec-
tions by double electrodes near acoustic synchronism, we will adopt
the approximate circuit of Fig. 3, in which we assign the same acous-
tic-wave impedance Z; to both the electrode and gap regions. Thus
Jor double electrodes we consider acoustic reflections to be entirely of
the RW 1iype, i.e., due to the presence of, and controlled by, the
electric load. This model is accurate as long as the RW reflections
are not so small as to be comparable to the low residual MEL
reflection level of a double electrode grating. In effect, the double
electrodes enable us to study RW reflections alone.

As indicated schematically in Figs. 2 and 3, we consider the case
of a purely resistive load in this experiment. The primary reason for
choosing this case is the striking fact that the crossed-field (a = 0)
and in-line (@ = 1) Mason circuit models predict completely opposite
dependence of the RW reflection level on the load resistance. In fact,
for operation at the acoustic synchronous frequency with a resistive
load, the acoustic return loss of a transducer is given in decibels by

o + Qe — 1) ] 0
(o + Q@) + (@ + [1 — Q)2 |”

Ly = —10 logm [

The parameter Q, is the transducer “radiation @,” i.e., the ratio of
transducer capacitive susceptance to the synchronous acoustic radia-
tion conductance. The variable is the ‘“load @’

QL = o CrlL )

which is just the load resistance normalized by the transducer
susceptance, .

A schematic plot of the acoustic return loss is given in Fig. 4,
where the value of @, 1s not specified and exact values are not assigned
to the ordinate scale. The parameter Q. depends on the transducer
geometry and substrate electromechanical coupling econstant. The
effect of varying @, is to shift the Ly curves up and down without
disturbing the following behavior. The crossed-field model (o = 0)
calls for a low-resistance load to minimize RW reflections (i.e., to
maximize the acoustic return loss Li). On the other hand, the
“¢n-line’’ model calls for a high-resistance load to achieve the same
goal. The horizontal dashed line in Fig. 4 indicates that even with
double electrodes there is a small residual MEL reflection and the
solid curves (which describe RW reflections only) are not valid
above this dashed line.
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Fig. 5. Schematic of delay line for measuring acoustic return loss.

IV. EXPERIMENT

Inasmuch as the crossed-field and in-line circuit models predict
opposite dependence of RW reflections on load resistance, an experi-
mental distinction between the two models can be made by measuring
acoustic return loss versus load resistance for double electrode trans-
ducers. A test delay line (shown schematically in Fig. 5) contains
two short broad-band transducers for launching and detecting
surface waves and- one longer transducer, with electric load Ry,
whose reflection coefficient is to be measured. The incident signal
consists of an RF pulse long enough to “fill"’ the transducer under
test, with the carrier set at the acoustic synchronous frequency.
The load resistor is inside the mounting box to minimize parasitic
capacitance, inductance, and resistance in the leads between the
transducer and the load. Electrode resistance can be measured and
counted as part of the load resistance Ry. The transducers are spaced
to allow easy resolution of the reference output and reflected output
pulses. The acoustic return loss is obtained by comparing the ref-
erence and reflected output pulses with the appropriate correction
for propagation loss and reduction of the incident wave in its first
pass under the detecting transducer.

Measurements of the acoustic return loss were carried out for
double electrode transducers operating at 50 MHz on three different
substrates: YX quartz, ST-X quartz, and YZ lithium niobate. Load
resistances ranged from an open circuit down to a short directly
stitch bonded across the transducer terminals. Intermediate resistors
were connected across the transducer with minimal lead length,
entirely inside the mounting box without feedthrough connectors.

V. RESULTS

Fig. 6 shows the theoretical and experimental values of acoustic
return loss for a 100-period transducer on YX quartz. Note the
virtually perfect agreement between the measured data and the
crossed-field circuit model. The highest return loss (48 dB) was
obtained with a stitch-bonded short-circuit load, where the effective
load resistance is the resistance of the transducer electrodes and the
wire bonds. Even at this low reflection level, the reflection is essen-
tially a regenerated wave from the load, since this grating suppresses
MEL reflections by 62 dB. That figure represents the limit of sup-
pression on YX quartz, which could be obtained with a short-circuit
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Fig. 7. Theoretical and experimental acoustic return loss for

load if there were no resistance in the transducer electrodes and wire
bonds.

A similar result is found for a 100-period transducer on ST-X
quartz, as evidenced by the data of Fig. 7. In this case the grating
suppresses MEL reflections by 67 dB so that the observed reflections
are again entirely regenerated waves from the electric load. The
crossed-field model again gives an excellent description of the
observed behavior. The highest acoustic return loss, obtained with
a stitch-bonded short circuit, is 58 dB.

The hlgher dielectric and electromechanical coupling constants
of YZ lithium niobate made an 8-period transducer convenient for
the acoustic return-loss measurement. Therefore, the theoretical
curves (which ignore MEL reflections) are expected to be valid only
for acoustic return loss up to 30 or 35 dB. The agreement between
the experiment and the crossed-field theory is again quite good (see
Fig. 8) except for some deviation above 30-dB suppression where
MEL reflections ‘become important. We have not recalculated the
theoretical curve with the inclusion of different acoustic-wave im-
pedances in the electrode and gap regions.

In modeling the acoustic reflections of single electrode transducers,
it is obviously necessary to assign different wave unpedances to the
electrodes and gaps, since MEL reflections from successive electrodes
tend to add rather than cancel. The foregoing results suggest reten-~
tion of the crossed-field model with the addition of the different

o TL

a 100-period double electrode transducer on ST-X quartz.,

wave impedances, as in Fig. 2, witha = 0. In order to test this model,
we have made reflection measurements on an untuned 25-period
single electrode transducer on YZ lithium niobate. Fig. 9 compares
the measured acoustic return loss of this transducer against the
predlctlon of the crossed-field model with impedance discontinuity,
assuming Z,/Z,, = 1.018, where Z, and Z, are the acoustic-wave
impedances of the gaps and electrodes, respectively.

The crossed-field model with impedance discontinuity correctly
predicts that high acoustic return loss cannot be obtained with
either a high- or low-resistance load. For QL >> 1, RW reflections
dominate and for Q; « 1, MEL reflections dominate. The highest
return loss (only about 8 dB) is obtained for an intermediate load
resistance, where there is apparently a partial cancellation of MEL
and RW reflections. Also shown for reference is the crossed-field
theory without the impedance discontinuity, i.e., the acoustic return
loss that would be expected if MEL reflections were not important.

VL CON CLUSIONS

It is well known that double electrodes are desirable whenever they
are allowed by fabrication constraints, since they nearly eliminate
MEL reflections and allow the designer to achieve high acoustic
réturn loss (at a sacrifice in insertion loss) by varying the load
resistance. The foregoing results show that maximum return loss is
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obtained with a low-resistance load as predicted by the crossed-field
circuit model in double electrode devices on YX quartz, ST-X
quartz, and YZ lithium niobate substrates.

The crossed-field model also appears to give a good description of
acoustic return loss in single electrode transducers if different
acoustic-wave impedances are assumed for the electrode and gap
regions. However, for single electrodes, MEL reflections limit the
degree to which a low-impedance load can improve (increase) the
return loss, and maximum return loss may oceur for an intermediate
impedance load rather than for the lowest possible load impedance.

The ordinary crossed-field model (even with different acoustic-
wave impedances in the elecirode and gap regions) [107, [11] is
based on a spatial distribution of eleciric and acoustic fields for bulk
waves [ 1] rather than surface waves. For this reason, its successful
application to surface waves has largely been confined to funda-
mental frequency (rather than higher harmonic) operation. In
addition, it does not fully account for the effects of varying stripe-
to-gap width ratios. Considerable work has already been accom-
plished [127-[14] to overcome these difficulties. The implication of
the present results is that any circuit model modifications for this
purpose should retain the o = 0 (short-circuited or “absent’’ nega-
tive capacitor) feature of the crossed-field model, at least for the
substrates and unity stripe-to-gap width ratios considered here.
The experiment deseribed here can be repeated (if desired) for other
piezoelectric substrates and also for different stripe-to-gap width
ratios to determine whether the in-line [2] (« = 1) or mixed [7]

0"T L

Theoretical and experimental acoustic return loss for a 25-
period single electrode transducer on YZ lithuim niobate.

(0 < @ < 1) model might in some cases give the best description
of the load-induced acoustic reflections.
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Normalized Impedance Graphs for Exponential
Transmission Lines

ROBERT P. ARNOLD, mMEMBER, 1EEE, WILLIAM L.
BAILEY, MEMBER, IEEE, AND RIMANTAS L. VAITKUS,
MEMBER, IEEE

Abstract—Sign errors in an existing closed form solution for the
reflection coefficient along an exponentially tapered transmission line
have been corrected and the solution has been modified by the use
of electrical line length. This allows useful graphs for the input im-
pedance of the tapered line to be computed which are normalized
with respect to frequency and system impedance. The graphs clearly
demonstrate both the broad-band and narrow-band properties of the
tapered line.

INTRODUCTION

Numerous articles [11-[6] have been published on the analysis
and application of exponentially tapered transmission lines. How-
ever, relatively few authors have published graphs which materially
aid in their application. Ramachandran [77] developed three inde-
pendent, charts for obtaining the locus of the input reflection coeffi-
cient of an exponential line terminated in a resistance equal to the
impedance level at that end. However, these charts must be used in
conjunction with the Smith chart for the evaluation of the input
impedance. Kamnitis [8] presented a curve on the impedance
characteristics of an exponential taper as a function of frequency.
However, this curve was for only one impedance transformation
ratio.

The purpose of this short paper is to present a useful graplical
representation of the input impedance to the expouentially tapered
transmission line for various impedance transformation ratios
normalized with respect to frequency and the system characteristic
impedance. Both the familiar broad-band and the less well-known
narrow-band properties of the tapered line will be clearly illustrated.

ANALYSIS

Fig. 1 shows an exponentially tapered transmission line used with
a system whose characteristic impedance is Z,. The high impedance
end of the taper (Z;) is connected to a line of characteristic imped-
ance Zyg, which in turn is terminated in a real load of Z,, or driven
by a generator of impedance Z,. The defining equation for the
characteristic impedance of the tapered line is given by

Z(X) = Z,exp (6X) (1)
where )

Z; lineimpedance at the low impedance end;
8  taper rate per unit distance > 0;
X distance from the low impedance end.

The analytical solution for the reflection coefficient along a lossless
exponentially tapered transmission line has been formulated by

Manuscript received March 18, 1974; revised June 10, 1974.
The authors are with the Semiconductor Research and Development
Laboratory, Motorola, Inc., Phoenix, Ariz. 85008.
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Womack [6]. At X = 0 the corrected expression! can be simplified to
-2y A
0) = —1 4 2 2
7(0) B @)

where r(0) is the reflection coefficient at the start of the line, and
A? =1 F 442/82 3)

A+ [r(1) + 2v/6] tanh (341/2)
" Atanh (6Al/2) +r(1) +2v/5

v =8 = j@2x/x) (5)
1 = length of taper

4)

and 7 (Z) is the reflection coefficient at the load (high impedance) end
of the taper.

The reflection coefficient (1) is readily obtained from Z, and Z.
(refer to Fig. 1). The taper rate § is obtained from (1) at X = I:

= Zyexp (8l) (6)
or
= (1/1) In (Z:/Z,). (7)

The input impedance at the low impedance end of the tapered
line can then be calculated using

1+ (0)

1—7(0)"

The inputs for (8) are therefore Zy, Zs, Zy, I, and \.
It is convenient to substitute the electrical length 6 into the pre-

vious equations thereby normalizing the parameters to frequency.
Performing this substitution in (2)—(5) yields

Zin =71 (8)

r(0) = —C + A/B (9)

A =1+ (2 (10)

5 A+ [r() + Cltanh (4D/2) an
A tanh (AD/2) + () + C

C = j20/D (12)

= In (Z+/Z,). (13)

Thus the required inputs to (8) have been reduced to Zi, Zs, Z,
and 6, only. This effectively generalizes the solution to any frequency
of application and transformation ratio of interest.

The input impedance Z;, was calculated for several transforma-
tion ratios (Z:/Z;) and for a range of electrical lengths of the taper
with Z; = Z,.2 The results are shown in Fig. 2. The abscissa is the
real part of the input impedance, and the ordinate is the imaginary
part of the input impedance, both normalized to Z,. Each of the
solid lines corresponds to a fixed ratio of Z./Z,; its value is shown
in the small spiral at the left hand end of each line. The broken lines
correspond to fixed values of electrical length. It was not practical
to indicate lengths above 120°, but the behavior of a typical case up
to several wavelengths in length is shown in Fig. 3.

L The original solution given by Womack contained sign errors.
2 Z2 # Zo gives no cases of comparable interest.



