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Experimental Distinction Between Crossed-Field and

In-Line Three-Port Circuit Models for Interdigital

Transducers

W. RICHARD SMITH

Abstract—The crossed-field sndin-line Mason circuit models for

interdigitrd surface-wave transducers give opposite predictions for

the dependence of acoustic reflection coefficients on electric load

resistance for purely resistive loads. Experiments described herein

show that the crossed-field model correctly describes the reflections

for YX quartz, ST-X quartz, and YZlithiumniobate substrates. A

low-resistance load ~lzes reflections for transducers with

double electrodes operating at the fundamental synchronous fre-

quency. For single electrode transducers, optimum reflection sup-

pression may call for a load resistance comparable to the transducer

impedance.

I. INTRODUCTION

The crossed-field and in-line three-port Mason circuits [1] for

bulk-wave transducers have found wide usage as approximate

equivalent circuits for interdigital surface-wave transducers [2].
Arguments for preferring both the in-line and crossed-field models

have been suggested by various authors [3]–[6]. In addition, an

intermediate mixed model has been proposed by Milsom and Red-
wood [7]. In [8] some differences between the models are empha-

sized, and it is stated that the choice of model apparently depends
on the piezoelectric substrate.

Thk short paper provides an experimental basis for determining

which model gives the better representation of a particular inter-
digital transducer and piezoelectric substrate. In addition, it negates
a statement made earlier in [8] to the effect that the two models
predict identical results for all transducer three-port transfer proper-
ties in the weak-coupling liiit. The new finding reported here is that
measurements of transducer acoustic reflection coefficients as a
function of electric load resistance can determine which model is

applicable, since the two models predict opposite behavior for purely
resistive loads. Specific results are given in the following for “double

electrode” [9] transducers on YX quartz, ST-X quartz, and YZ
lithium niobate, and for a “single electrode” transducer on YZ

lithium niobate.

II. ACOUSTIC REFLECTIONS

The experimental distinction between the crossed-field and in-line
Mason circuits is based on measuring the acoustic reflection coeffi-
cient of a transducer as a function of the electric load. We begin by
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dietinguishing the two causes of surface-wave reflections in inter-
digital transducers.

The first cause ie the fact that metal electrodes short out the tan-

gential electric field at the crystal surface and introduce mechanical

loading, so that the electrode and gap regions have different apparent

wave impedances [10], [11 ]. The second cause is that forward and

backward surface waves are “regenerated” in the transducer by the
voltage that the incident surface wave delivers to the electric load.
The magnitude of the regenerated surface waves can be reduced (at
a sacrifice in insertion loss) by varying the load impedance.

In ordinary eingle electrode transducer [Fig. 1 (a)], the
“mass/electrical loading” (MEL ) reflections can become par-

ticularly troublesome because the metal stripes are spaced by one-
half wavelength, causing MEL reflections to add in phase. The
double electrode geometry [9] [Fig. 1(b) ] provides a high degree

of cancellation of the MEL reflections from successive electrodes, so

that the reflections in double electrode devices are almost entirely
of the regenerated wave (RW ) type. Our purpose here is to deter-

mine a transducer circuit model which accurately describes the total

(MEL and RW) reflections with particular emphasis on their rela-
tion to the electric load.

III. MASON CIRCUIT MODELS

The Mason circuits for bulk-wave transducers have found wide

usage in surface-wave work since they give a three-port description

of interdigital transducers, either periodic or dkpersive with many

nonidentical electrodes. In order to account for the different acousti~

wave impedances of the electrode and gap regions, the circuit of
Fig. 2 has been used by at least two authors [10], [11 ]. In th~ circuit
the unit cell of length d is subdivided into a metallized and an un-

metallized region, with wave impedances Z~ and ZO in the corre-
sponding acoustic transmission lines.

Synchronous operation is detined by the condition that d be equal
to one-half acoustic wavelength (A = 2d ), and the circuit of Fig. 2

..___._E&q-c’”

———————————

Fig. 2. Mason circuit model for single electrodes, including an acoustic-
wave impedance discontinuity.
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Fig. 3. Mason circuit without impedance discontinuity for double
electrodes (assumes perfect cancellation of MEL reflections).

corresponds to single electrodes. By means of the parameter a the
circuit can be designated as the “crossed-field” model [2] (a = O),
the “in-lime” model [2] (a = 1), or the “mixed” model [7]
(o<a <l).

Up to the present time wehavenotmodhled the Mason circuits
to distinguish between the electric- and acoustic-field distributions

of single and double electrodes. We have, however, modeled the effect

of double electrodes on MEL reflections by including in the region

of length dfow Mason circuits of like electric polarity but of alter-
nating wave impedances 20 and Z~. For operation near the syn-
chronous condition A = 2d, this circuit will exhibit a high degree of
cancellation of MEL reflections of successive metal stripes, while
maintaining the electric driving period of one acoustic wavelength.
However, toemphasize thenearly total cancellation of MELreflec-
tionsby double electrodes near acoustic synchromsrn, we will adopt
the approximate circuit of Fig. 3, in which we assign the same acous-
tic-wave ~pedance ZO to both theelectrode and gap regions. Thus
~or double electrodes we wnsider acoustic wjiectionsto be entirely of
the RW type, i.e., due to the presence of, and controlled by, the
electric load. Thk model is accurate as long as the RW reflections

are not so small as to be comparable ‘to the low residual MEL

reflection level of a double electrode grating. In effect, the double

electrodes enable us to study RWrefle6tions alone.

Asindicated schematically in Figs. 2 and 3, reconsider the case
of apurely resistive load in th~ experiment. The primary reason for

chooshg this cmeisthe striking fact that the crossed-field (a = O)
and in-line (a = 1) Mason circuit modele predict completely opposite

dependence of the RW reflection lwel on the load resistance. In fact,
for operation at the acoustic synchronous frequency with a resistive

load, theacoustic return loss of atransducer isgiven in decibels by

[

C12+~L2(~ — 1)2

1‘“ = ’1010g’O (a + Q.Q,)r + (Q, + [1 – a]~L)’ .
(1)

The parameter Q, is the transducer “radiation Q,” i.e., the ratio of

transducer capacitive susceptance to the synchronous acoustic radia-
tion conductance. The variable is the “load Q“

which is just the load resistance normalized by the transducer
susceptance.

A schematic plot of the acoustic return loss is given in Fig. 4,
where the value of Q, 1s not specified and exact values are not assigned

to the ordinate scale. The parameter Q, depends on the transducer

geometry and substrate electromechanical coupling constant. The
effect of varying Q, is to shtit the LII curves up and down without

disturbing the following behavior. The crossed-jield modd (a = O)
calls for a low-resistance load to miniuize RW reflections (i.e., to

maximize the acoustic return loss LU ). On the other hand, the
‘(in-line” model calls for a high-resistance load to achieve the same

goal. The horizontal dzshed line in Fig. 4 indicates that even with
double electrodes there is a small residual MEL reflection and the
solid curves (which describe RW reflections only) are not valid
above this dashed line.

I
ACOUSTIC
RETURN
LOSS (di?J

o

\
\ IMPEDANcE DISCONTINUITY REFLEcTION LEVEL /

\
(OOUBLE ELECTRODES) /

\

CROSSEO
FIELO MOOEL
(a’= o)

[C(= 1)

0.01 0.1 1.0 10 100
LOAO Q PARAMETER, QL = WOCTRL

Fig. 4. Schematic of acoustic return-loss predictions of crossed-field
and in-line Mason circuit models without impedance discontinnit y.
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IV. EXPERIMENT

Inasmuch as the crossed-field and in-line circuit models predict
opposite dependence of RW reflections on load resistance, an experi-
mental d~tinction between the two models can be made by measuring

acoustic return loss versus load resistance for double electrode trans-
ducers. A test delay line (shown schematically in Fig. 5) contains

two short broad-band transducers for launching and detecting
surf ace waves and. one longer transducer, with electric load R~,

whose reflection coefficient is to be measured. The incident signal

consists of an RF pulse long enough to “fill” the transducer under
test, with the carrier set at the acoustic synchronous frequency.
The load resistor is inside the mounting box to mimmize parasitic

capacitance, inductance, and resistance @ the leads between the
transducer and the load. Electrode resistance can be measured and
counted as part of the load resistance RL. The transducers are spaced
to allow easy resolution of the reference output and reflected output

pulses. The acoustic return loss is obtained by comparing the ref-
erence and reflected output pulses with the appropriate correction

for propagation loss and reduction of the incident wave in its first

pass under the detecting transducer.
Measurements of the acoustic return loss were carried out for

double electrode transducers operating at 50 MHz on three different

substrates: YX quartz, ST-X quartz, and YZ lithium niobate. Load
resistances ranged from an open circuit down to a short directly

stitch bonded across the transducer terminals. Intermediate resistors
were connected across the transducer with minimal lead length,
entirely inside the mounting box without f eedthrough connectors,

V. RESULTS

Fig. 6 shows the theoretical and experimental values of acoustic
return loss for a 100-period transducer on YX quartz. Note the
virtually perfect agreement between the measured data and the

crossed-field circuit model. The highest return loss (48 dB ) was

obtained with a stitch-bonded short-circuit load, where the eff ective
load resistance is the resistance of the transducer electrodes and the

wire bonds. Even at this low reflection level, the reflection is essen-
tially a regenerated wave from the load, since this grating suppresses
MEL reflections by 62 dB. That figure represents the limit of sup-
pression on YX quartz, which could be obtained with a short-circuit
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Fig. 6. Theoretical andexperimental acoustic return loss fora 100-period double electrode transducer onYX quartz.
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Fig. 7. Theoretical and experimental acoustic return loss fora 100-period double electrode transducer on ST-X quartz.

load if there were no resistance in the transducer electrodes and wire
bonds.

A similar result is found for a 100-period transducer on ST-X

quartz,’as evidenced by the data of Fig. 7. In this case thematin~
s~ppresses MELreflec;ionsby67 dBso-that theobserved refl~ction~
are again entirely regenerated waves from the electric load. The

crossed-field model again gives an excellent description of the
observed behavior. The highest acoustic return loss, obtained with
a stitch-bonded short circuit, is 58 dB.

The higher dielectric and electromechanical coupling constants

of YZ lit&n niobate made an 8-period transducer convenient for

the acoustic return-loss measurement. Therefore, the theoretical
curves (which ign’ore MEL reflections) areexpected to be valid only
for acoustic return loss up to300r 35dB. The agreement between

the experiment andthe crossed-field theory is again quite good (see
Fig. 8) except for some deviation” above 30-dB suppression where
MEL reflections’become important. We have not recalculated the
theoretical curve with the inclusion of different acousticiwave fi..
pedances ‘in the electrode and gap regions.

In modeling the acoustic reflections of iingte electrode transducers,
it is obviously necessary to ae<lgn different wave impedances to the
electrodes and gaps, since MEL reflections from successive electrodes

tend toadd rather than cancel. The foregoing results suggest reten-
tion of the crossed-field model with the addition of the different

wave impedances, asin Fig. 2, witha = O.Inorder totestthiemodel,
we have made reflection measurements on an untuned 25-period
single electrode transducer on Y-Z lithium niobate. Fig. 9 compares
the measured acoustic return loss of this transducer against the
prediction of the crossed- field model with impedance discontinuity,
assuming ZO/Zn = 1.018, where 20 and Z. are the acoustic-wave

irnpedaneesof thegaps and electrodes, respectively. ”
The crossed-field model with impedance discontinuity correctly

predicts that high acoustic return loss cannot be obtained with
either a high- or low-resistance load. For Q~ >>1, RW reflections

dominate and for &,<<l, MEL reflections dominate. The highest
return loss (only about 8 dB) is obtained for an intermediate load

resistance, where there is apparently a partial cancellation of MEL
and RW reflections. Alao shown for reference is the crossed-field

theory without the irnped~nce ckcontinuity, i.e., the acoustic return
loss that woulilbe expected if MELreflections were notirnportant.

VI. CONCLUSIONS

It is well known that double electrodes are desirable whenever they
are allowed by fabrication constraints, since they nearly eliiinate

MEL reflections and allow the designer to achieve high acoustic
return loss (at a sacrifice in insertion lees) by varyirig the load

resistance.” The foregoing reeults show that maximum return loss is
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f?ig. 9. Theoretical and experimental acoustic return loss for a 25-
period single electrode transduceron YZlithuimniobate.

obtained with a low-resistance load as predicted by the crossed-$eld
circuit model in double electrode devices on YX quartz, ST-X

quartz, and YZlithium niobate substrates.
The crossed-field model also appears to give a good description of

acoustic return loss in single electrode transducers if different

acoustic-wave impedances are assumed for the electrode and gap
regions. However, for single electrodes, MEL reflections liiit the

degree to which alow-impedance load can improve (increzse) the
return loss, andmaximum return loss may occur for an intermediate

impedance load rather than for the lowest possible load impedance.
The ordinary crossed-field model (even with different acoustic-

wave impedances in the electrode and gap regions) [10], [11] is
based on a spatial distribution of electric and acoustic fields for bulk

waves [1] rather than surface waves. For thk reason, its successful

application to surface waves has largely been confined to funda-
mental frequency (rather than higher harmonic) operation. In
addition, it does not fully account for the effects of varyiug stripe-
to-gap width ratios. Considerable work has already been accom-
plished [12]–[14] toovercome these difficulties. The implication of
the present results is that any circuit model modifications for this

purpose should retain the a = O (short-circuited or “absent” neg~
tive capacitor) feature of the crossed-field model, at least for the
substrates and unity stripe-to-gap width ratios considered here.
Theexperiment described here can be repeated (if desired) for other
piezoelectric substrates and also for different stripe-to-gap width
ratios to determine whether the in-line [2] (CY = 1) or mixed [7]

(O <a < 1) model might in some cases give the best description

of the load-induced acoustic reflections.
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Normalized Impedance Graphs for Exponential

Transmission Lines

ROBERT P. ARNOLD, MEMBER, IEEE, WILLIAM L.
BAILEY, MEMBER, IEEE, AND RIMANTAS L. VAITKUS,

klEIVB~R, lEllE

Abstract—Sign errors in an existing closed form solution for the

reflection coefficient along an exponentially tapered transmission line

have been corrected and the solution has been modified by the use

of electrical line length. Thk allows useful graphs for the input im-

pedance of the tapered line to be computed which are normalized

with respect to frequency and system impedance. The graphs clearly

demonstrate both the broad-band and narrow-band properties of the

tapered liie.

INTRODUCTION

Numerous articles [1 ]–[6] have been publiihed on the analysis
and application of exponentially tapered transmission lines. How-

ever, relatively few authors have published graphs which materially
aid in their application. Ramachandran [7] developed three inde-

pendent charts for obtaining the locus of the input reflection coeffi-
cient of an exponential line terminated in a resistance equal to the

impedance level at that end. However, these charts must be used in
conjunction with the Smith chart for the evaluation of the input

impedance. Kamnitis [8] presented a curve on the impedance
characteristics of an exponential taper as a function of frequency.

However, this curve was for only one impedance transformation

ratio.

The purpose of thk short paper is to present a useful grapkical
representation of the input impedance to the exponentially tapered

transmission line for various impedance transformation ratios
normalized with respect to frequency and the system characteristic
impedance. Both the familiar broad-band and the less well-known
narrow-band properties of the tapered line will be clearly illustrated.

ANALYSIS

Fig. 1 shows an exponentially tapered transmission line used with
a system whose characteristic impedance is 20. The high impedance

end of the taper (Z.Z) is connected to a line of characteristic imped-
ance 20, whkh in turn is terminated in a real load of 20, or driven

by a generator of impedance ZO. The defining equation for the

characteristic impedance of the tapered line is given by

Z(X) = Zlexp (6X) (1)

where

Z1 line impedance at the low impedance end;
6 taper rate per unit distance > O;
X distance from the low impedance end.

The analytical solution for the reflection coefficient along a lossless

exponentially tapered transmission line has been formulated by

Manuscript received March lS: 1974; revised June 10, 1974.
The authors are with the Semiconductor Research and Development

Laboratory, Motorola, Inc., Phoenix, Ariz. S5008.
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Fig. 1. An exponentially tapered transmission line loaded at the high
impedance end with ZO.

Womack [6]. At X = O the corrected expression’ can be simplified to

(2)

where r(O) is the reflection coefficient at the start of the line, and

At = 1 + 4y2/& (3)

~ = A + [r (1) + 27/~] tanh (t$At/2)

A tanh (~A1/2) + r (1) + 2Y/~
(4)

y = jp = j(27r/A) (5)

1 = length of taper

and r(1) is the reflection coefficient at the load (high impedance) end

of the taper.
The reflection coefficient r(t) is readily obtained from 20 and Zz

(refer to Fig. 1). The taper rate 6 is obtained from (1) at X = t:

22 = ZI exp (61)

or

8 = (1/1) in (22/21).

The input impedance at the low impedance
line can then be calculated using

1 +r(0)
Zjm=zl —,

1 – r(o)

(6)

(7)

end of the tapered

(8)

The inputs for (8) are therefore Zl, Z2, 2., 1, and k

It is convenient to substitute the electrical length o into the pre-
vious equations thereby normalizing the parameters to frequency.

Performing this substitution in (2)-(5) yields

r-(0) = —C +A/B (9)

A2C1+C2 (lo)

~ = i4 + [r(l) + C] tanh (AD/2)

A tanh (A~/2) + r-(l) + C
(11)

C = j20/D (12)

D = in (ZZ/Zl ). (13)

Thus the required inputs to (8) have been redueed to 21, 22, 20

and 0, only. This effectively generalizes the solution to any frequency

of application and transformation ratio of interest.
The input impedance Zi. was calculated for several transforma-

tion ratios (ZZ/Zl ) and for a range of electrical lengths of the taper
with Zz = 2..2 The results are shown in Fig. 2. The abscissa ie the
real part of the input impedance, and the ordinate is the imaginary
part of the input impedance, both normalized to Z,. Each of the
solid lines corresponds to a il.xed ratio of Zz/Zl; its value is shown
in the small spiral at the left hand end of each line. The broken lines
correspond to fixed values of electrical length. It was not practical
to indicate lengths above 120°, but the behavior of a typical case up

to several wavelengths in length is shown in Fig. 3.

I The original solution given by Womack contained sign errors.
‘ZZ2 # Zo gives no cases of comparable interest.


